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Headways in traffic flow: Remarks from a physical perspective
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Traffic flow can be understood as a realization of a broad class of one dimensional physical systems, where
a hard core repulsive interaction competes with a longer ranged attraction between the particles. It can be
shown rigorously that the statistical properties of such systems in thermal equilibrium are well described by a
family of distributions that stems from the random matrix theory. Analyzing the traffic data from different
sources, we show that traffic on real roads belongs to that class of random matrix distributions. Also, various
traffic simulation models show a similar behavior. It is demonstrated in such a way that the headway distri-
bution of a highway traffic, that serves usually as a paradigm of systems driven far from equilibrium, is
reasonably well described by a distribution originating from equilibrium statistical physics.
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I. RANDOM MATRIX THEORY AND TRAFFIC It is well known that the statistical properties of the Dyson
gas in thermal equilibrium are exactly described by RMT. In
Random matrix theoryRMT) appears to be a very uni- particular, for the heat bath inverse temperatgrel or 8
versal instrument. Originally invented to model the energy=2 the Dyson gas conforms to the orthogonal/unitary en-
levels of atomic nuclei it turns out to be useful in a wide semble of random matrices, respectively. In this respect two
range of different systems and occasions. Of special impoprominent statistical distributions are commonly discussed:
tance is the deep connection between classical chaotic sy#ie spacing distribution and the number variance. The spac-
tems and their quantum mechanical counterparts. ing distribution P(s) describes the probability density that
This paper reports on a work done on another connectiortwo neighboring particles are found with mutual distance
that between RMT and one dimensional many particle sysequal tos. The distributionP(s) is scaled so that the mean
tems, with a special focus on traffic. For illustration, this distance equals on€s)= [s P(s) ds=1. It takes into ac-
relation will be discussed first with the help of the Dyson gascount only the two particle correlations and is therefore very
where it is known to be exact. The Dyson gas describes theobust and not sensitive to the detailed properties of the sys-
equilibrium properties of a one dimensional systenNgfar-  tem. A more sensitive measure for discussing the correlations
ticles confined either to a ring or by a harmonic potential,between the particles is the number varianE&(L)
interacting repulsively through a Coulomb potential, =([N(L)—L]?). HereN(L) denotes the number of particles
contained in an interval of length. Note that(N(L))=L,
due to the fact that the mean particle spacing equals one.
V=—- > ~In(xi—x)), (1) For high temperatures of the gag8-(-0) the spacing dis-
tribution is PoissonianP(s)=e " ® and>?(L)=L. Upon in-
creasing the heat bath inverse temperairéhe interaction
wherex; is the coordinate of théth particle andh denotes between the particles causes what is known as level repul-
the number of the interacting neighbors. In the originalsion in the original context of the theory, that means the
model of Dyson the interaction extends over all particle pairgprobability to find small distances between particles is sup-
and hencér=N [1]. Recent modifications use, however, alsopressed an®®(s)=s? for smalls. For a fixeds the spacing
h<N [2]. distributionP(s) is well described by the heuristical formula

(3]
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II. ANALYZING TRAFFIC DATA

2
2 =
AL B 2 InL+Cp ®) In [6] it has been found that the time headway distribution

between Mexican buses follows the prediction of RMT. In

for large L. Restricting the interaction to neighboring pairs the following it is shown that the same holds true for qther
only (h=1), the so called semi-Poisson regime of the Dysontransport data sets as well. However, it would be very inter-
gas(called also a short ranged Dyson gas — SRDGen- esting to learn about further examples of this type of distri-
countered. This leads {@] butions in order to have a stronger argumentation for the

connection between RMT and traffic.
In traffic science, distance distributions of the type de-

B+1
P4(s)= %sﬁexq—(,&r 1)s] (4)  scribed by the equation E¢4) are well known, but were not
F(g+1) recognized as the result of RMT or a general result describ-
ing one dimensional dynamical systems. For instance, the
and most general function that traffic engineers use is the so
called Pearson-type-lll distribution that rea@se[7] and
1 +2 references therejn
SAL)~ =L+ pLET2) (5)
B+l 6(1+p)?
g—a\<t 1 g-a
for largeL. P(g)= b bT (k) S B (6)

The aim is to use the statistical properties of the Dyson
gas for the description of what is called headway distribution

in the traffic science. Before doing this a few comments arg, yarea is a location parameteh is a scale parametéba-

necessary. The particles of the standard Dyson gas are _rgl"cally the mean value &=0), andk is a shape parameter.

situation, where the cars occufiyepending on their densit Note that fora=0 andk=1/b=/4+1 the Pearson distribu-
! P 9 Y _ tion is identical with the distribution Ed4) discussed above.

up to 30% of the available space. Moreover, the potential EqF - . ; .
: ) : et or traffic in the low density state, this reduces to the Pois-
(1) is of long-range type, a property that is not justified for son distribution. To traffic with higher flow, where the inter-

realistic transport systems. The influence of this modifica-

tions on the equilibrium distribution can be checked using?ction between the cars could not be neglected, the full dis-
the Metropolis algorithm to reach the thermal equilibrium.f‘”bunon has been app_hed successfully. l\_lote_ that in traffic it
First, for reasonable lengths of the cars the spacing distribd$ Petter to use the time headway distribution, since most
tion, Eq. (4), holds true provided the spacirsgs measured observations of the traffic flow are measured from induction
from bumper to bumper, ie., exc|uding the part of the Spacé')op detectors, i.e., are local measurements. Additionally, as
occupied by the car. On the contrary, the slope of the numbdg well known, traffic can condense into a traffic jam, where
variance, Eq.(5), decreases with the increasing length ofthe headway distributions for the normal and jammed traffic
cars. This is understandable, since the excluded volumBiow may stem from different stochastic processes. There-
causes stronger correlations between the cars. Second, tfuee, it has to be made sure that the used data belong exclu-
system is not sensitive to the long range character of thsively to one state, for instance by sampling the data from a
potential Eqg.(1). Replacing the potentia¥(x)=In(x) with  certain velocity range only.

In(x,) for x>x,, does not change the statistical properties of An important fact is that it is hardly possible to distin-
the gas providea,,> 1. Additionally, direct numerical inte- guish the different traffic models using the headway distribu-
grations of the Dyson gas have been performed showing thiion only. For this purpose it is suitable to use the number
same behavior. They are reported in a separate section of thigriance statistics as well since it is much more sensitive to
paper. deviations.

For the above results the special character of the potential Shown is the analysis of a data set recorded on the Ger-
(Coulomb is not important. It has been recognized that a gasnan freewayAl near Cologne. The two detectors are some
with a different shape of the potential enerdgr example, 9000 m apart, between them there is a number of on and off
the so called Yukawa gd¥], or Pechukas gd$]) leads to  ramps. This data set has been used alreadgl]irfior a dif-
the same statistics. It has to be stressed that the Dyson gisent purpose. The Fig. 1 shows a comparison of the mea-
models is a one dimensional system. When comparing realured headway distribution®] for the so-called synchro-
data from a multilane traffic to the RMT predictions, it is nized traffic[10,11 and for the free traffic. It could be seen
necessary to exclude all the overtaking cars because they arem these figures that the real traffic seems to follow the
not correlated with the others. This holds true mainly for freeRMT nicely, except for some values near the maximum of
traffic. For the synchronized regime the number of the overthe curve. The number of variance behavior is visible in Fig.
taking cars is considerably smallgess than 0.5%). Also the 2. For the free flow, the distribution is Poissonian, for syn-
fact that traffic is, on contrary to the Dyson gas, a systenthronized traffic and small interval lengths the number vari-
with open boundary and with active elements that do noance follows the prediction of the nearest neighbor Dyson
conserve energy, is not significant for further discussion. gas with excluded volume.
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TIME HEADWAY OF HIGHWAY TRAFFIC
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] FIG. 1. Scaled{g)=1) time headway distri-
bution of highway traffic. Full lines represent the
Poissonian curve and E¢4) for 8=3.24. Plus
%0_8 L signs and bars display the spacing distribution for
i the free flow regime and for the synchronized re-
5 gime, respectively. Integrated time headway
g o6 JoPg(s')ds" is shown in the inset where the plus
o signs are the free flow states and the squares rep-
resent the synchronized states. The curves display
0.4 integrated probability density for Poissonian and
semi-Poissonian distributions, E@).
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lll. SIMULATION MODELS for the casev =1 and for the time headway distribution.
The next model to be discussed is the so called Stefan

This section analyzes a number of well known micro- T : )
scopic traffic flow models from two different classes, fully Krauf3 (SK) modgl[l?,la. The basic idea is that cars dr[ve
s fast as possible, but avoid crashes. Therefore at time

discrete and time discrete. The case of time continuous moci_"-F 1, they have to choose their velocity(t+1)<u ..r that

els has been explored also, however, not with the rigour usegly o« int account the braking distances of the following and

in the case of the discrete models. Preliminary results sugs, . ; : :
. . ! . e preceding car, respectively. This means that the velocit
gest that the model if12,13 behaves differently, since its P g P Y y

headway distribution is Gaussian for any density, while thd'@S to fulfill the inequalityd(v) +vr<d(v)+g, whered
model in[14] shows a behavior similar to what is found for (*) i the braking distance of the cars at veloaityof the
the discrete models below. following or velocity v of the preceding car, respectively.
As an example of a fully discrete model the NagelThe space headway between the cars is gusk—x—X\,
Schreckenberg cellular automaton moded, 16| is used. For  where is the length of car. The braking capabilities of the

this model, named cellular automaté¢@A) model in the cars are the same for all cars and are parameterized by the
following, a number of exact results is known at leastmaximum deceleratiob.

3 T T T T T

+
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+
er i FIG. 2. Number variance of highway traffic.
8 + The full line represents a Poissonian number vari-
£ + ance, the curve represents B§) for 8=3.24.
51-5- y Plus signs, squares, and circles display number
E variance for free flow states, synchronized states,
< o I and stop-and-go states, respectively. Note that the
1+ o N synchronized states are more correlated than the
o o B stop-and-go states.
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)
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FIG. 3. Comparison between E@d.1) and the
best fit of Eq.(4). The full line represents Ed4)
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This safety conditions can be transformed into a set of updoes not allow time headways smaller than one time step.

date rules as follows: Therefore it is necessary to shift the probability Etl) by
one timestep to the left in order to compare with the RMT
~ g(t)—ov(t) result, Eq.(4). The results foc=0.5,c=0.25, respectively,
Veae= V(1) +2 b ———, (7)  are shown in Fig. 3. Note that the interaction between the
2btu(t)+o(t) cars of the CA model leads to a short ranged repulsion, but
) additionally to a medium ranged attracti@in the vicinity of
U des™ MiN{v (1) + 8,0 saes U maxt (8)  s=1) that probably causes the discrepancy in the time head-
way statistics close to the maximum of the curve in Fig. 3.
v(t+1)=maxvges—aeé, 0}, 9 Additionally, it is also possible to characterize the CA
model by plotting the inverse temperatyseof SRDG as a
X(t+1)=x(t)+v(t+1). (100 function of the densityc, which gives the increase froi

~1 to B~1.9 for the densities e[1/10,1/2 (see Fig. 4
The parametea is the maximum acceleration, the parameterThe difference between E¢) and Eq.(11), described by?
€ measures the degree of randomnéss,a random number, test, is plotted in the inset of the same Fig. 4. The best agree-
£e[0,1], while v is just the maximum velocity. The ment is reached for the density equal to 1/2.
choice ofv g is Not unique, other formulas can be used as For maximum velocities greater than 1, no analytic solu-

well, but give little difference$19]. tion of the model is known. Numerical simulations lead,
The work for the CA model has been done already, sedowever, to similar results.
[16] and references therein. For this model with,,=1 a With the results above in mind, the case of the SK model

complicated time headway distribution formula has been decan be discussed. The most prominent feature of this model
rived, which is essentially identicahot in all respects, see IS that it has a transition from a free flow state into a jammed

below) with Eq. (4) state at some densipy . This transition has some similarity
with a first order phase transition, therefore the transition

qy qy\s? 5 s qy point depends on the initial conditighysteresis The simu-
P(s)= Q( 1- T) —Q(s—1)p> °+ m( 1 lations shown below always start in the homogeneous state
gi=1lp—1,v;=min{g;, vmag- The critical densityp. is just
qy \s?! qy qy 1 the maximum density where the model remains in the homo-
T 1-¢ N H“L 1-c—y p= (D) geneous state infinitely long. By using this initial condition it
is made sure that the interesting high flow state that exists
where the shorthand notatiogs=1—p and only nearp. can be explored.
More specifically, the model displays, as function of den-
1 sity, the following set of states:
y= ﬁ[l_ V1-4qc(l-0)] p<<p. a noninteracting low density regime, which upon
increasing the density transforms into.
have been used. Here,is the global density ang is the p~p. a strongly interacting high flow state, that has some

only parameter of the model. Before comparing 84) with similarity to an almost deterministic ordered state, and which
Eq. (4) it is important to take into account that the CA model eventually is metastable.
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p=p. a free flow regime that coexists with the jammed gime), where 8 depends on the densigy with g—0 if p
flow. Within a jam, the cars move very slowly. —0.

The model should belong to the case of the Dyson gas For larger densities, the model reaches via a RMT regime
with short ranged interaction and excluded volume, therewith =1 and 8=2 (around density 0.1) the above-
fore, it is to be expected that it displays a headway distribumentioned high flow state. This state did not directly fit into
tion and a number variance of the semi-Poissonian typehe framework of RMT, however. E.g., the time discrete
However, the complexities encountered in the case of the CAeadway distribution collapses into a very narrow distribu-
model happen to occur in this case, also. tion, which can hardly fit with the continuous formulas

The Fig. 5 shows one representative time headway distriabove. Considering a continuous distribution constructed
bution from each of the regimes above, except for therom the dynamical variable;=(g;+1)/v; would need a
jammed regimg20]. It can be seen that the results nicely large value ofg if fitted with the semi-Poisson formula or
follow the prediction of random matrix theory fo~4 with the Wigner formula, Eq(2).
given by Eq.(2). For small car densities, the time headway For densities even larger, the free flow state that coexists
distribution follows a semi-Poisson witi<1 (Poisson re- with the jammed state displays a behavior very similar to

1+ o 1 + 4
08 +
0.6
08k 0.4 4 FIG. 5. Headway distributions for different
ozl densities of the SK model. Plotted are distribu-
L tions for a densityp., p=0.1, (rectangles and
g o 1 2 3 T4 for a fairly large densityp=0.25 (crosses and
§°~6‘ § compared with the prediction of the RMT with
z B~4. Only cars with speeds larger thap,,/2
3 have been sampled, otherwise different statistical
a o4l | regimes are mixed together, since the cars in a

jam do conform to RMT. The case of small den-
sity (p=0.05), is plotted in the inset and is com-
pared with the semi-Poisson distribution wigh

0.2 - =0.5.

1 1
0 05 1 1.5 2 25
Distance between two subsequent cars
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- FIG. 6. Comparison between the headway
distribution according to Eq4) and a numerical
integration of the short ranged Dyson gas fr

. =2. In the inset the gap distribution for the
Dyson gas with an additional medium ranged at-
tractive potential is plotted. The inverse tempera-
] ture of the simulation wag=2, shown is the
measured distribution and compared with E§.
oal 1 for B=1 and B=2. The deviations are of the

| same character as found in the free regime of the
SK model; see the inset of the Fig. 5.
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what has been found in the simple CA, with a general con- As
formance to RMT, but with the same deviations for interme- Un+12=Vn-12" = VV(Xn) PR + ’ , (16
diate headways. The deviations at intermediate headways are n-1z Fn+if2
stronger than in the case of the simple CA_. In order to _Iearn Prs19=2R(Xn) = Prr_1/2+ (17)
more about these deviations, the next section reports simula-
tions of the Dyson gas with a modified interaction potential As
that includes such an intermediate attraction. the1=tyt+ . (18)
Pn+1/12
IV. INTEGRATING THE DYSON GAS Heres is the new time variable, whilg is a short hand

notation for the step size control functiét(x,).
Running the simulation then is standard in molecular dy-
mics. In order to reach thermal equilibrium from a non-

This section reports the numerical integration of the
Dyson gas. The numerical scheme has to be time invariant

and energy conserving, and retain the symplectic structure L I " A
the phasg);pace Thegapproach used hgre Iias descriftin equilibrium initial condition, so called thermalization steps
'- ; ' have to be applied, that rescale the velocity until equilibrium

a so called step size controlled Verlet aIgoIrg‘hm. The esnerg¥1as been rea?cf)hed Such a rescaling simpli// multipﬁes the ve-
conservation AE/E achieved is about .o, 107° ” , - 4 o
which is enough for the purpose here. This scheme uses Igcities with 1N2 5 Eyin, WhereEy, is the current kinetic :
reparameterization of time where the functi®(x) that gov- ene_rlgt))/ _Of thefsample. Alldmgasurewe_nts haV(_e been done in
erns the evolution of the time parameterization has been ch -quitibrium, o lcqurse, "ijn R%\J/IIVTe rea yFl_mpgesfswe agreemelnt
sen simply asR(x) =max|a(X)| with a maximum step size, [ZeztiNeen Sl » S€e Fg. o for an example
where a(x) is the acceleratiorfvecton, x is the vector of : . L . .

() A J Upon adding a small attractive interaction, which acts on

space coordinates andthe vector of velocities. The equa- it diat | | . the int ”
tions used read an intermediate scale only, e.g., using as the interaction po-

tential
d 0 (12) 1
_X: _—,
ds® R(x) V=-In(Ax)—¢;—————— (19
1—cy(AX—Cp)?
d VV(x)
asv= "~ Rx) (13)  with cy=2,¢,=1, c,= —0.5, the system displays a behavior
that has the same kind of deviations from the RMT predic-
d 1 tion as are present in the CA and SK model, see Fig. 6.
— ==, (149
ds” R(X) V. CONCLUSIONS

which are translated into the following numerical scheme:  gg far, it has been shown that traffic systems behaves
As similar to a large class of one dimensional dynamical sys-
(15)  tems, whose representative is provided by the Dyson gas.

Xp+1=Xp T Un+1/2s . .
Pn+1/2 There is a deep connection between quantum systems that
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displays level repulsion, and follows RMT, and their classi-multilane traffic and with a car fleet, where the parameters
cal counterpart displaying chaos. The Dyson gas is known tthat describe the dynamics of the cénsaximum velocity,
display Hamiltonian chaos. This is why it can be speculatedcceleration, and the likeare distributed over certain
that traffic is a chaotic system, too. It has to be stressed thattervals.
properties of the Dyson gas are described with the help of Nevertheless, this work shows, that the time headway dis-
equilibrium statistical physics that serves as a link betweeltributions observed in traffic flow can be understood as the
this dynamical system and the theory of random matricesconsequence of a very general underlying thé@yson gas
On the other hand, the traffic is used to be investigated as @and RMT), which is not very sensitive to the details of the
system of interacting “particles” driven far from equilibrium interaction between the particles. For the Dyson gas, it can
(se€[16)). It is therefore a surprising fact that it is possible to be shown that a number of different interaction types leads to
describe its microscopic statistical properties by methods ofhe same headway distribution. Of course, not any interac-
random matrix theory and hence of equilibrium statisticaltion leads to the semi-Poisson distribution. Since the statisti-
physics. cal properties of traffic seem to be in line with RMT, the

However, there are also some drawbacks in this argumemnodels aimed at describing traffic have to checked for the
tation. First, traffic is for sure a dissipative system. Seconddeviations between them and reality in the light of the results
as pointed out if23], real traffic is a complex system so that presented here.
not a single model is, currently, able to reproduce the empiri-
cally observed state that has been called synchronized traffic.

In the standard car following models a medium ranged
attraction is present. This leads finally to a small deviation This work has been supported by the Foundation for The-
from the original RMT predictions. But simulations done oretical Physics in Slemeno, Czech Republic. It would not
with a variant of the Dyson gas show clearly that this attrachave been possible without the provision of data by the
tion adds the same type of corrections to the RMT as wellLandschaftverband Rheinland of the German Federal State
The empirically obtained data, however, do not show thoséorthrhine Westfalia, which we gratefully acknowledge.
deviations. This shows that the situation on the road is noDiscussions with Claudia Hertfelder and Georg Hertkorn
completely equivalent to the simple models used in thifrom the German Aerospace Center have helped to clarify
work. The simulation results have to be checked with trughe issues presented here.
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