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Headways in traffic flow: Remarks from a physical perspective
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Traffic flow can be understood as a realization of a broad class of one dimensional physical systems, where
a hard core repulsive interaction competes with a longer ranged attraction between the particles. It can be
shown rigorously that the statistical properties of such systems in thermal equilibrium are well described by a
family of distributions that stems from the random matrix theory. Analyzing the traffic data from different
sources, we show that traffic on real roads belongs to that class of random matrix distributions. Also, various
traffic simulation models show a similar behavior. It is demonstrated in such a way that the headway distri-
bution of a highway traffic, that serves usually as a paradigm of systems driven far from equilibrium, is
reasonably well described by a distribution originating from equilibrium statistical physics.
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I. RANDOM MATRIX THEORY AND TRAFFIC

Random matrix theory~RMT! appears to be a very un
versal instrument. Originally invented to model the ene
levels of atomic nuclei it turns out to be useful in a wid
range of different systems and occasions. Of special im
tance is the deep connection between classical chaotic
tems and their quantum mechanical counterparts.

This paper reports on a work done on another connect
that between RMT and one dimensional many particle s
tems, with a special focus on traffic. For illustration, th
relation will be discussed first with the help of the Dyson g
where it is known to be exact. The Dyson gas describes
equilibrium properties of a one dimensional system ofN par-
ticles confined either to a ring or by a harmonic potent
interacting repulsively through a Coulomb potential,

V52 (
i 5 j 11,j 12, . . . ,j 1h

ln~ uxi2xj u!, ~1!

wherexi is the coordinate of thei th particle andh denotes
the number of the interacting neighbors. In the origin
model of Dyson the interaction extends over all particle pa
and henceh5N @1#. Recent modifications use, however, al
h,N @2#.
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It is well known that the statistical properties of the Dys
gas in thermal equilibrium are exactly described by RMT.
particular, for the heat bath inverse temperatureb51 or b
52 the Dyson gas conforms to the orthogonal/unitary
semble of random matrices, respectively. In this respect
prominent statistical distributions are commonly discuss
the spacing distribution and the number variance. The sp
ing distribution P(s) describes the probability density tha
two neighboring particles are found with mutual distan
equal tos. The distributionP(s) is scaled so that the mea
distance equals one:^s&5*s P(s) ds51. It takes into ac-
count only the two particle correlations and is therefore v
robust and not sensitive to the detailed properties of the
tem. A more sensitive measure for discussing the correlat
between the particles is the number varianceS2(L)
5^@N(L)2L#2&. HereN(L) denotes the number of particle
contained in an interval of lengthL. Note that^N(L)&5L,
due to the fact that the mean particle spacing equals one

For high temperatures of the gas (b→0) the spacing dis-
tribution is Poissonian,P(s)5e2s andS2(L)5L. Upon in-
creasing the heat bath inverse temperatureb, the interaction
between the particles causes what is known as level re
sion in the original context of the theory, that means t
probability to find small distances between particles is s
pressed andP(s)}sb for small s. For a fixedb the spacing
distributionP(s) is well described by the heuristical formul
@3#

Pb~s!5AbS p s

2 D b

expF2
b p2

16
s22S Bb2

b p

4 D sG , ~2!

where the constantAb and Bb are determined by requiring
*P(s)ds51 and *sP(s)ds51. The number variance be
haves as

-

,
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MILAN KRBALEK, PETR ŠEBA, AND PETER WAGNER PHYSICAL REVIEW E64 066119
S2~L !'
2

b p2
ln L1Cb ~3!

for large L. Restricting the interaction to neighboring pai
only (h51), the so called semi-Poisson regime of the Dys
gas ~called also a short ranged Dyson gas – SRDG! is en-
countered. This leads to@2#

Pb~s!5
~b11!b11

G~b11!
sbexp@2~b11!s# ~4!

and

S2~L !'
1

b11
L1

b~b12!

6~11b!2
~5!

for largeL.
The aim is to use the statistical properties of the Dys

gas for the description of what is called headway distribut
in the traffic science. Before doing this a few comments
necessary. The particles of the standard Dyson gas ar
garded as dimensionless. This is not true in a realistic tra
situation, where the cars occupy~depending on their density!
up to 30% of the available space. Moreover, the potential
~1! is of long-range type, a property that is not justified f
realistic transport systems. The influence of this modifi
tions on the equilibrium distribution can be checked us
the Metropolis algorithm to reach the thermal equilibriu
First, for reasonable lengths of the cars the spacing distr
tion, Eq. ~4!, holds true provided the spacings is measured
from bumper to bumper, i.e., excluding the part of the sp
occupied by the car. On the contrary, the slope of the num
variance, Eq.~5!, decreases with the increasing length
cars. This is understandable, since the excluded volu
causes stronger correlations between the cars. Second
system is not sensitive to the long range character of
potential Eq.~1!. Replacing the potentialV(x)5 ln(x) with
ln(xw) for x.xw does not change the statistical properties
the gas providedxw@1. Additionally, direct numerical inte-
grations of the Dyson gas have been performed showing
same behavior. They are reported in a separate section o
paper.

For the above results the special character of the pote
~Coulomb! is not important. It has been recognized that a g
with a different shape of the potential energy~for example,
the so called Yukawa gas@4#, or Pechukas gas@5#! leads to
the same statistics. It has to be stressed that the Dyson
models is a one dimensional system. When comparing
data from a multilane traffic to the RMT predictions, it
necessary to exclude all the overtaking cars because the
not correlated with the others. This holds true mainly for fr
traffic. For the synchronized regime the number of the ov
taking cars is considerably smaller~less than 0.5%). Also the
fact that traffic is, on contrary to the Dyson gas, a syst
with open boundary and with active elements that do
conserve energy, is not significant for further discussion.
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II. ANALYZING TRAFFIC DATA

In @6# it has been found that the time headway distributi
between Mexican buses follows the prediction of RMT.
the following it is shown that the same holds true for oth
transport data sets as well. However, it would be very int
esting to learn about further examples of this type of dis
butions in order to have a stronger argumentation for
connection between RMT and traffic.

In traffic science, distance distributions of the type d
scribed by the equation Eq.~4! are well known, but were no
recognized as the result of RMT or a general result desc
ing one dimensional dynamical systems. For instance,
most general function that traffic engineers use is the
called Pearson-type-III distribution that reads~see @7# and
references therein!

P~g!5S g2a

b D k21 1

bG~k!
expS 2

g2a

b D , ~6!

wherea is a location parameter,b is a scale parameter~ba-
sically the mean value ifa50), andk is a shape paramete
Note that fora50 andk51/b5b11 the Pearson distribu
tion is identical with the distribution Eq.~4! discussed above
For traffic in the low density state, this reduces to the Po
son distribution. To traffic with higher flow, where the inte
action between the cars could not be neglected, the full
tribution has been applied successfully. Note that in traffi
is better to use the time headway distribution, since m
observations of the traffic flow are measured from induct
loop detectors, i.e., are local measurements. Additionally
is well known, traffic can condense into a traffic jam, whe
the headway distributions for the normal and jammed tra
flow may stem from different stochastic processes. The
fore, it has to be made sure that the used data belong ex
sively to one state, for instance by sampling the data from
certain velocity range only.

An important fact is that it is hardly possible to distin
guish the different traffic models using the headway distrib
tion only. For this purpose it is suitable to use the numb
variance statistics as well since it is much more sensitive
deviations.

Shown is the analysis of a data set recorded on the G
man freewayA1 near Cologne. The two detectors are so
9000 m apart, between them there is a number of on and
ramps. This data set has been used already in@8# for a dif-
ferent purpose. The Fig. 1 shows a comparison of the m
sured headway distributions@9# for the so-called synchro
nized traffic@10,11# and for the free traffic. It could be see
from these figures that the real traffic seems to follow
RMT nicely, except for some values near the maximum
the curve. The number of variance behavior is visible in F
2. For the free flow, the distribution is Poissonian, for sy
chronized traffic and small interval lengths the number va
ance follows the prediction of the nearest neighbor Dys
gas with excluded volume.
9-2
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HEADWAYS IN TRAFFIC FLOW: REMARKS FROM A . . . PHYSICAL REVIEW E64 066119
FIG. 1. Scaled (̂g&51) time headway distri-
bution of highway traffic. Full lines represent th
Poissonian curve and Eq.~4! for b53.24. Plus
signs and bars display the spacing distribution
the free flow regime and for the synchronized r
gime, respectively. Integrated time headw
*0

sPb(s8)ds8 is shown in the inset where the plu
signs are the free flow states and the squares
resent the synchronized states. The curves disp
integrated probability density for Poissonian an
semi-Poissonian distributions, Eq.~4!.
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III. SIMULATION MODELS

This section analyzes a number of well known micr
scopic traffic flow models from two different classes, ful
discrete and time discrete. The case of time continuous m
els has been explored also, however, not with the rigour u
in the case of the discrete models. Preliminary results s
gest that the model in@12,13# behaves differently, since it
headway distribution is Gaussian for any density, while
model in@14# shows a behavior similar to what is found fo
the discrete models below.

As an example of a fully discrete model the Nag
Schreckenberg cellular automaton model@15,16# is used. For
this model, named cellular automaton~CA! model in the
following, a number of exact results is known at lea
06611
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for the casevmax51 and for the time headway distribution
The next model to be discussed is the so called Ste

Krauß ~SK! model @17,18#. The basic idea is that cars driv
as fast as possible, but avoid crashes. Therefore at timt
11, they have to choose their velocityv(t11)<vsafe that
takes into account the braking distances of the following a
the preceding car, respectively. This means that the velo
has to fulfill the inequalityd(v)1vt<d( ṽ)1g, where d
(•) is the braking distance of the cars at velocityv of the
following or velocity ṽ of the preceding car, respectivel
The space headway between the cars is justg5 x̃2x2l,
wherel is the length of car. The braking capabilities of th
cars are the same for all cars and are parameterized by
maximum decelerationb.
.
ri-
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the
FIG. 2. Number variance of highway traffic
The full line represents a Poissonian number va
ance, the curve represents Eq.~5! for b53.24.
Plus signs, squares, and circles display num
variance for free flow states, synchronized stat
and stop-and-go states, respectively. Note that
synchronized states are more correlated than
stop-and-go states.
9-3
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FIG. 3. Comparison between Eq.~11! and the
best fit of Eq.~4!. The full line represents Eq.~4!
for b51.86 and bars display the time headway
CA model for c50.5. The same forb51.1989
andc50.25 is visible in the inset.
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This safety conditions can be transformed into a set of
date rules as follows:

vsafe5 ṽ~ t !12 b
g~ t !2 ṽ~ t !

2 b1v~ t !1 ṽ~ t !
, ~7!

vdes5min$v~ t !1a,vsafe,vmax%, ~8!

v~ t11!5max$vdes2aej,0%, ~9!

x~ t11!5x~ t !1v~ t11!. ~10!

The parametera is the maximum acceleration, the parame
e measures the degree of randomness,j is a random number
jP@0,1#, while vmax is just the maximum velocity. The
choice ofvsafe is not unique, other formulas can be used
well, but give little differences@19#.

The work for the CA model has been done already,
@16# and references therein. For this model withvmax51 a
complicated time headway distribution formula has been
rived, which is essentially identical~not in all respects, see
below! with Eq. ~4!

P~s!5
q y

c2y S 12
q y

c D s21

2q2~s21!ps221
q y

12c2y S 1

2
q y

12cD s21

2S q y

c2y
1

q y

12c2yD ps21, ~11!

where the shorthand notationsq512p and

y5
1

2 q
@12A124 q c~12c!#

have been used. Here,c is the global density andp is the
only parameter of the model. Before comparing Eq.~11! with
Eq. ~4! it is important to take into account that the CA mod
06611
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does not allow time headways smaller than one time s
Therefore it is necessary to shift the probability Eq.~11! by
one timestep to the left in order to compare with the RM
result, Eq.~4!. The results forc50.5, c50.25, respectively,
are shown in Fig. 3. Note that the interaction between
cars of the CA model leads to a short ranged repulsion,
additionally to a medium ranged attraction~in the vicinity of
s51) that probably causes the discrepancy in the time he
way statistics close to the maximum of the curve in Fig.

Additionally, it is also possible to characterize the C
model by plotting the inverse temperatureb of SRDG as a
function of the densityc, which gives the increase fromb
'1 to b'1.9 for the densitiescP@1/10,1/2# ~see Fig. 4!.
The difference between Eq.~4! and Eq.~11!, described byx2

test, is plotted in the inset of the same Fig. 4. The best ag
ment is reached for the density equal to 1/2.

For maximum velocities greater than 1, no analytic so
tion of the model is known. Numerical simulations lea
however, to similar results.

With the results above in mind, the case of the SK mo
can be discussed. The most prominent feature of this mo
is that it has a transition from a free flow state into a jamm
state at some densityrc . This transition has some similarit
with a first order phase transition, therefore the transit
point depends on the initial condition~hysteresis!. The simu-
lations shown below always start in the homogeneous s
gi51/r21, v i5min$gi , vmax%. The critical densityrc is just
the maximum density where the model remains in the hom
geneous state infinitely long. By using this initial condition
is made sure that the interesting high flow state that ex
only nearrc can be explored.

More specifically, the model displays, as function of de
sity, the following set of states:

r!rc a noninteracting low density regime, which upo
increasing the density transforms into.

r'rc a strongly interacting high flow state, that has som
similarity to an almost deterministic ordered state, and wh
eventually is metastable.
9-4
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FIG. 4. Inverse temperatureb of SRDG as a
function of densityc for the CA model. The curve
is determined by the best fit of Eq.~4! to Eq.~11!.
In the inset the deviation between Eq.~11! and
Eq. ~4! is described using ax2 test.
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r>rc a free flow regime that coexists with the jamm
flow. Within a jam, the cars move very slowly.

The model should belong to the case of the Dyson
with short ranged interaction and excluded volume, the
fore, it is to be expected that it displays a headway distri
tion and a number variance of the semi-Poissonian ty
However, the complexities encountered in the case of the
model happen to occur in this case, also.

The Fig. 5 shows one representative time headway di
bution from each of the regimes above, except for
jammed regime@20#. It can be seen that the results nice
follow the prediction of random matrix theory forb'4
given by Eq.~2!. For small car densities, the time headw
distribution follows a semi-Poisson withb,1 ~Poisson re-
06611
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gime!, whereb depends on the densityr with b→0 if r
→0.

For larger densities, the model reaches via a RMT reg
with b51 and b52 ~around density 0.1) the above
mentioned high flow state. This state did not directly fit in
the framework of RMT, however. E.g., the time discre
headway distribution collapses into a very narrow distrib
tion, which can hardly fit with the continuous formula
above. Considering a continuous distribution construc
from the dynamical variablet i5(gi11)/v i would need a
large value ofb if fitted with the semi-Poisson formula o
with the Wigner formula, Eq.~2!.

For densities even larger, the free flow state that coex
with the jammed state displays a behavior very similar
t
u-

cal
a

-
-

FIG. 5. Headway distributions for differen
densities of the SK model. Plotted are distrib
tions for a densityrc , r50.1, ~rectangles! and
for a fairly large density,r50.25 ~crosses! and
compared with the prediction of the RMT with
b'4. Only cars with speeds larger thanvmax/2
have been sampled, otherwise different statisti
regimes are mixed together, since the cars in
jam do conform to RMT. The case of small den
sity (r50.05), is plotted in the inset and is com
pared with the semi-Poisson distribution withb
50.5.
9-5
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FIG. 6. Comparison between the headw
distribution according to Eq.~4! and a numerical
integration of the short ranged Dyson gas forb
52. In the inset the gap distribution for th
Dyson gas with an additional medium ranged a
tractive potential is plotted. The inverse temper
ture of the simulation wasb52, shown is the
measured distribution and compared with Eq.~4!
for b51 and b52. The deviations are of the
same character as found in the free regime of
SK model; see the inset of the Fig. 5.
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what has been found in the simple CA, with a general c
formance to RMT, but with the same deviations for interm
diate headways. The deviations at intermediate headway
stronger than in the case of the simple CA. In order to le
more about these deviations, the next section reports sim
tions of the Dyson gas with a modified interaction poten
that includes such an intermediate attraction.

IV. INTEGRATING THE DYSON GAS

This section reports the numerical integration of t
Dyson gas. The numerical scheme has to be time invar
and energy conserving, and retain the symplectic structur
the phase space. The approach used here is described in@21#,
a so called step size controlled Verlet algorithm. The ene
conservation DE/E achieved is about 1024, . . . ,1025,
which is enough for the purpose here. This scheme us
reparameterization of time where the functionR(x) that gov-
erns the evolution of the time parameterization has been
sen simply asR(x)5maxiuai(x)u with a maximum step size
where a(x) is the acceleration~vector!, x is the vector of
space coordinates andv the vector of velocities. The equa
tions used read

d

d s
x5

v
R~x!

, ~12!

d

d s
v52

¹V~x!

R~x!
, ~13!

d

d s
t5

1

R~x!
, ~14!

which are translated into the following numerical scheme

xn115xn1
Ds

rn11/2
vn11/2, ~15!
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vn11/25vn21/22
Ds

2
¹V~xn!S 1

rn21/2
1

1

rn11/2
D , ~16!

rn11/252R~xn!2rn21/2, ~17!

tn115tn1
Ds

rn11/2
. ~18!

Here s is the new time variable, whiler is a short hand
notation for the step size control functionR(xn).

Running the simulation then is standard in molecular d
namics. In order to reach thermal equilibrium from a no
equilibrium initial condition, so called thermalization step
have to be applied, that rescale the velocity until equilibriu
has been reached. Such a rescaling simply multiplies the
locities with 1/A2 b Ekin, whereEkin is the current kinetic
energy of the sample. All measurements have been don
equilibrium, of course, and give really impressive agreem
between simulation and RMT, see Fig. 6 for an exam
@22#.

Upon adding a small attractive interaction, which acts
an intermediate scale only, e.g., using as the interaction
tential

V52 ln~Dx!2c1

1

12c2~Dx2c0!2
~19!

with c052, c151, c2520.5, the system displays a behavi
that has the same kind of deviations from the RMT pred
tion as are present in the CA and SK model, see Fig. 6.

V. CONCLUSIONS

So far, it has been shown that traffic systems beha
similar to a large class of one dimensional dynamical s
tems, whose representative is provided by the Dyson
There is a deep connection between quantum systems
9-6
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HEADWAYS IN TRAFFIC FLOW: REMARKS FROM A . . . PHYSICAL REVIEW E64 066119
displays level repulsion, and follows RMT, and their clas
cal counterpart displaying chaos. The Dyson gas is know
display Hamiltonian chaos. This is why it can be specula
that traffic is a chaotic system, too. It has to be stressed
properties of the Dyson gas are described with the help
equilibrium statistical physics that serves as a link betw
this dynamical system and the theory of random matric
On the other hand, the traffic is used to be investigated
system of interacting ‘‘particles’’ driven far from equilibrium
~see@16#!. It is therefore a surprising fact that it is possible
describe its microscopic statistical properties by method
random matrix theory and hence of equilibrium statisti
physics.

However, there are also some drawbacks in this argum
tation. First, traffic is for sure a dissipative system. Seco
as pointed out in@23#, real traffic is a complex system so th
not a single model is, currently, able to reproduce the emp
cally observed state that has been called synchronized tra

In the standard car following models a medium rang
attraction is present. This leads finally to a small deviat
from the original RMT predictions. But simulations don
with a variant of the Dyson gas show clearly that this attr
tion adds the same type of corrections to the RMT as w
The empirically obtained data, however, do not show th
deviations. This shows that the situation on the road is
completely equivalent to the simple models used in t
work. The simulation results have to be checked with t
w
th
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multilane traffic and with a car fleet, where the paramet
that describe the dynamics of the cars~maximum velocity,
acceleration, and the like! are distributed over certain
intervals.

Nevertheless, this work shows, that the time headway
tributions observed in traffic flow can be understood as
consequence of a very general underlying theory~Dyson gas
and RMT!, which is not very sensitive to the details of th
interaction between the particles. For the Dyson gas, it
be shown that a number of different interaction types lead
the same headway distribution. Of course, not any inter
tion leads to the semi-Poisson distribution. Since the stat
cal properties of traffic seem to be in line with RMT, th
models aimed at describing traffic have to checked for
deviations between them and reality in the light of the resu
presented here.
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